
Journal of Global Optimization 42: 61–77, 2002.
© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

61

Piecewise-Convex Maximization Problems:
Algorithm and Computational Experiments��

DOMINIQUE FORTIN and IDER TSEVENDORJ
1LIM, Centre de Mathématiques et Informatique,
39 rue Joliot-Curie - F-13453 Marseille Cedex 13, France.
E-mail: fortin@lim.univ-mrs.fr 2INRIA, Domaine de Voluceau, Rocquencourt,
B.P. 105, 78153 Le Chesnay Cedex, France.
E-mail: Ider.Tsevendorj@inria.fr

Abstract. A function F : Rn → R is called a piecewise convex function if it can be decomposed
into F(x) = min{fj (x) | j ∈ M}, where fj : Rn → R is convex for all j ∈ M = {1, 2...,m}.
In this article, we provide an algorithm for solving maxF(x) subject to x ∈ D, which is based on
global optimality conditions. We report first computational experiments on small examples and open
up some issues to improve the checking of optimality conditions.

AMS subject classifications: 90C46, 90C47

Key words: Optimality conditions, Global search algorithm, Local search algorithm, Nonconvex and
nonsmooth problem, Piecewise convex function

Abbreviations: PCMP – Piecewise Convex Maximization Problems

1. Introduction

Let D be a nonempty, compact and convex subset of R
n and let M be a finite index

set. In order to be self contained, we recall some basic definitions and results from
[10].

Definition 1. A function F : Rn → R is called a piecewise convex function if it
can be decomposed into :

F(x) = min{fj (x) | j ∈ M}, (1.1)

where fj : Rn → R is convex for all j ∈ M = {1, 2..., m}.
Definition 2. A problem{

maximize F(x),

subject to x ∈ D
(PCMP)

is called a piecewise convex maximization problem, if F(·) is a piecewise convex
function.
�� This research was supported by Direction des transports terrestres, Ministère de l’Equipement

des Transports et du Logement (projet N 226 75 01 63-41 50)

62 D. FORTIN AND I. TSEVENDORJ

We will use further notations, clco(D) as the closure of the convex hull of set
D and :

I (z) = {i ∈ M | fi(z) = F(z)},
Dk(z) = D ∩ {x | fj (x) > F(z) for all j ∈ M \ {k}}

for respectively, set of active functions at z, and a special subdomain.

Proposition 1. [10] If z ∈ D is a global maximum of (PCMP) then for all k ∈ I (z)

∂fk(y)
⋂

N(Dk(z), y) �= ∅ for all y s.t. fk(y) = F(z). (gN)

Definition 3. F(·) is said to be regular at z ∈ D if there exists k ∈ I (z) and
v ∈ R

n such that fk(v) < fk(z).

Theorem 1. [10] Let z ∈ D and F(·) be regular at z. Then a sufficient condition
for z to be a global maximum for (PCMP) is:

∂fk(y)
⋂

N(clco(Dk(z)), y) �= ∅ for all y s.t. fk(y) = F(z) (gS)

Piecewise-Convex Maximization Problems have many theoretical [2] and prac-
tical applications [7], but algorithms and a solution for such problems do not seem
to have been extensively studied yet. The well known [5, 6] convex maximization
is a special case of (PCMP). The former is a NP-hard problem, therefore the latter
is NP-hard as well.

The purpose of this paper is 2-fold:

• to construct an algorithm for finding the global solution to the piecewise con-
vex maximization problem (PCMP) based on the above mentioned necessary
and sufficient optimality conditions,

• to fully describe a practical algorithm to handle this problem and to present
initial computational experiments.

The present paper is organized as follows. First in Section 2, we suggest an
algorithm for finding the global solution to (PCMP). Then Section 3 is devoted
to the very important subproblem of local search, where we provide an algorithm
and prove its convergence. Section 4 presents some details of a realization of the
algorithm described in Section 2. First experiments, reported in Section 5, on small
examples in two and three dimensions, turn out to be effective; however, we give
some hints on how to handle structural properties of the intersection of level sets
to carry the algorithm over to a higher dimensional space, in an efficient way.

PIECEWISE-CONVEX MAXIMIZATION PROBLEMS 63

[PCMP(x)]
Let z be a local solution to (PCMP) with starting point x.
Construct I (z) and choose s ∈ I (z).
Approximate Ds(z) by polytope � = {x ∈ R

n | Px ≤ p}, where Ds(z) ⊂ � ⊂ D.
Approximate ∩m∈Mclco(Dm(z)) by Lebesgue sets intersection graph.
/* Approximate ∩m∈Mclco(Dm(z)) from outside */
foreach constraint
y = tangent point on level set fs(y) = F(z) along constraint normal ;
u = arg max{〈∇fs (y), x〉/x ∈ �}; /* linearized problem */
if 〈∇fs (y), u − y〉 > 0 and u ∈ Ds(z)

then x := u; goto 1; /* better point */
else if u �∈ Ds(z)

then � := �
⋂{x | 〈d, x〉 ≤ n, } /* add cutting plane */

endfor

2. Global Maximum: a (PCMP) algorithm

A preliminary theoretical algorithm based on the necessary and sufficient condi-
tion (gN), (gS) was outlined in [10]. The purpose of this section is to describe a
practical algorithm.

We consider, in the following, only quadratic functions to provide analytic
solutions for some simple subproblems and to use standard solvers in experiments.

fi(x) = 1

2
〈Qix, x〉 + 〈li , x〉 + γi

Qi = [Qi]�,Qi > 0 (symmetric positive definite)

see Algorithm [PCMP(x)]

Remark 1. It is not difficult to see that if 〈∇fs(y), u − y〉 > 0 and u ∈ Ds(z)

then we have an improvement on x (F(x) ≤ F(u)) since the facts

〈∇fs(y), u − y〉 > 0 and u ∈ Ds(z)

imply

fs(u) − fs(y) ≥ 〈∇fs(y), u − y〉 > 0,

fj (u) > F(z) for all j �= s and u ∈ D.

The following sections will develop this raw algorithm into a runnable code, as
well as describing the first computational experiments.

3. Local Search: a convergent algorithm

This section is devoted to one of the important and difficult problems in nonconvex
optimization; local maximum search is known to be in the NP-hard class in convex
maximization [8]. The convex maximization is a particular case of (PCMP) when

64 D. FORTIN AND I. TSEVENDORJ

m = 1. Therefore the local maximum search of (PCMP) clearly belongs to the
NP-hard class.

In the literature on global optimization we can often find the phrase let a local
solution be given... but in practice, an efficient algorithm should handle this as-
sumption since it occurs in an inner loop of the global maximum search. Here, we
highlight a practical algorithm to address this important issue.

First, let us enhance our notations with

Lf (α) = {x | f (x) ≤ α},
J (x) = {j ∈ M | fj (x) > F(x)}

for Lebesgue’s set of f (·) at α and a Lebesgue related index set. We refine J (x)

into J ′(x) = {j ∈ M | fj (x) > F(x), Lfj (F (x)) �= ∅} and accordingly M

as M ′ = I (x) ∪ J ′(x); in practice, it may happen that J ′(x) �= J (x) at a given x

due to rounding errors, requiring refinement in the local search algorithm or else a
premature emptiness stopping criterion is wrongly detected.

Let xk be a feasible point in (PCMP), by definition of F(·) both xk �∈ Lfj (F (x
k))

for all j ∈ J (xk) and I (xk) �= ∅ are true.

Remark 2. As an initial feasible point, we choose the maximum over all quad-
ratic minimizations,

x0 = max
m∈M

{min
x

{fm(x) | x ∈ D}}.

In the remainder of the section, for the sake of conciseness we will write I, J
instead of I (xk), J (xk).

We introduce a set of polytopes P k related to current point xk :

P k =
{
x ∈ R

n | 〈∇fj (xk), x〉 ≥ 〈∇fj (xk), vj 〉, j ∈ J

〈∇fi(xk), x〉 ≥ 〈∇fi(xk), xk〉, i ∈ I

}

where vj = arg max{〈∇fj (xk), x〉 | x ∈ Lfj (F (x
k))}, j ∈ J could be analytic-

ally solved under the quadratic assumption:

v = arg max{〈d, x〉s.t.
1

2
〈Qx, x〉 + 〈l, x〉 + γ ≤ ξ }

= Q−1(d

√
〈Q−1l, l〉 + 2(ξ − γ)

〈Q−1d, d〉 − l) (5)

where d,Q, l, γ are appropriately associated with functions fj (·) and ξ = F(xk).
(see algorithm [Local Search(D,M)])

Remark 3. In fact, theoretically we need examine only one active function i.g.
m ∈ I instead ofm ∈ M ′; however, we are looking for a point in the complement of
Lebesgue’s set of F(·), therefore a much symmetric behavior comes from selecting

PIECEWISE-CONVEX MAXIMIZATION PROBLEMS 65

[Local Search(D,M)]
Let xk ∈ D be given
for all m ∈ M ′
wm = arg max〈∇fm(xk), x〉 s.t. x ∈ D ∩ Pk

endforall
wr = arg max{mini∈M fi(w

m) | m ∈ M ′}
if ‖ wr − xk ‖≤ ε

then stop /* local solution found */
else k = k + 1; xk = wr ; goto 2;

all functions in M ′ = I ∪ J instead. We could notice too, in step 3, that while
wr is extracted from a M × M ′ array of values, it is actually found through a
one-dimensional loop along all objectives fi(·), i ∈ M.

Proposition 2. Under the assumptions mentioned about D and F(·), numerical
sequence {F(xk)} is nondecreasing and convergent. Moreover, limk→∞ xk is a
stationary point of (PCMP).

Proof. Since wr = arg max{〈fr(xk), x〉 | x ∈ D ∩ P k}, we have wr ∈ D ∩ P k.
By definition of polytope P k and due to the convexity of the functions, wr ∈ P k

implies

0 ≤ 〈∇fi(xk), wr − xk〉 ≤ fi(w
r)− fi(x

k), i ∈ I,

0≤〈∇fj (xk), wr−vj 〉 = λ〈∇fj (vj), wr−vj 〉≤λ(fj (w
r)−fj (v

j)), j ∈J
where λ > 0 is directly derived from (5). This means F(xk) ≤ F(xk+1). The com-
pactness of D and the continuity of F(·) complete the proof of the convergence.

Now, let us prove the stationarity of the accumulation point. Assume that z =
xk is an accumulation point for some large k. Notice, that our function F(·) is
directionally differentiable [2]. So, we have to prove

∂F (z)

∂g
≤ 0 for all g ∈ .(z),

where .(z) is the cone of feasible directions of the set D at the point z.
Assume the opposite. Then there exists a g0 ∈ .(z) such that ∂F (z)

∂g0 > 0. By
the definition of the feasible direction (see [2] p. 252) there exists λ > 0 and a
sequence {zs} such that

zs ∈ D, zs �= z, zs → z,

vs = zs − z

‖ zs − s ‖ → v0, g0 = λv0.

Since F(zs) = F(z + zs − z) = F(z+ ‖ zs − z ‖ vs) = F(z + γsv
s) with

γs =‖ zs − z ‖> 0, then

lim
s→∞

1

γs
(F (zs)− F(z)) = lim

s→∞
1

γs
(F (z + γsv

s)− F(z)) = ∂F (z)

∂v0
.

66 D. FORTIN AND I. TSEVENDORJ

Hence,

F(zs) = F(z)+ γs
∂F (z)

∂v0
+ o(γs).

On the other hand, we have

∂F (z)

∂v0
= 1

λ
lim
α→+0

1

αλ−1
(F (z + αλ−1(λv0))− F(z)) = 1

λ

∂F(z)

∂g0
.

So we obtain that F(zs) > F(z) for sufficiently large s.
For sufficiently large s and k we also have zs ∈ P k, that implies (F (z) =

)F (xk+1) ≥ F(zs) since wm = arg max{〈∇fm(z), x〉 | P k ∩ D} for all m. This
contradiction F(z) ≥ F(zs) > F(z) completes the proof.

Remark 4. In the above algorithm, the stopping criterion comes from the empti-
ness of polytope P k; however, in practice, we observed a slow speed of conver-
gence and a tailing off effect close to a local maximum. Therefore, we adopt
a multiresolution scheme and early force emptyness of P k for a given accuracy
ε = 10l × ε (a multiple of actual tolerance ε); then we refine ε = ε/10 until ε ≤ ε.
Under this multiresolution scheme, we get much faster convergence without a tail-
ing off effect in the examples reported below but this practical rule of the thumb
requires a thorough sensibility analysis to prove the speed of convergence from
coarse to the finest resolution. Under this scheme, polytopes P k

ε are introduced as
inner approximation of the above P k.

P k
ε =

{
x ∈ R

n | 〈∇fj (xk), x〉 ≥ 〈∇fj (xk), vj 〉 + ε, j ∈ J

〈∇fi(xk), x〉 ≥ 〈∇fi(xk), xk〉 + ε, i ∈ I

}

4. Some Details of the (PCMP) algorithm

4.1. SEPARATION: AN INTERSECTION GRAPH

Given a local solution z, in order to improve the best known solution we have to
look for a point in clco(Dm(z)), which is a difficult problem whose construction
was bypassed in [10] by recoursing to Caratheodory’s existence theorem. In this
section, we borrow from linear programming, the well-known equivalence separa-
tion ≡ optimization, to notice that whenever two Lebesgue’s sets of the functions
fi(·), fj (·) at the level F(z) are disjoint then it’s likely to retrieve a clco(Dm(z))

point inbetween. Once more, while from theoretical viewpoint, clco(Dm(z)) is
searched for, for only one m ∈ M, a better behavior was observed under iso-
tropic retrieval ∩m∈Mclco(Dm(z)). Here, we address an intersection graph con-
struction, namely we build a symmetric graph G(z) = (V ,E(z)) having V =
{Lfi (F (z)), i ∈ M} as vertices and E(z) = {(fi, fj) | D ∩ Lfi (F (z)) ∩
Lfj (F (z)) �= ∅} as edges. To decide whether Lebesque’s sets Lfi (F (z)) and

PIECEWISE-CONVEX MAXIMIZATION PROBLEMS 67

[Intersection edge(fi, fj)]
k = 0;
forever do
xki = arg min{fi(x) | x ∈ D ∩ Pk

j };
xk
j

= arg min{fj (x) | x ∈ D ∩ Pk
i
};

if (fi (xki) ≤ F(z) and fj (x
k
i
) ≤ F(z)) or (fi(xkj) ≤ F(z) and fj (x

k
j
) ≤ F(z))

then return edge(fi, fj);
if (fi (xki) > F(z) and fj (x

k
i) > F(z)) or (fi(xkj) > F(z) and fj (x

k
j) > F(z))

then return no edge(fi, fj);
enddo

Lfj (F (z)) are separated in D, we turn the separation problem into both optim-
ization problems:

min fi(x)s.t. x ∈ D ∩ Lfj (F (z));
min fj (x)s.t. x ∈ D ∩ Lfi (F (z)).

Once again, we introduce a set of polytopes that approximate Lebesgue’s sets
Lfi (F (z)) and Lfj (F (z)) from the outside by piecewise linear hyperplanes at
some points on level sets. We have fi(x̄i

k) + 〈∇fi(x̄i k), x − x̄i
k〉 ≤ fi(x) ≤

F(z) using convexity and Lebesgue’s set definition; then selecting x̄i
k on level set,

fi(x̄i
k) = F(z), we approximate Lebesgue’s set as announced: P k

i = ∩k≥0{〈∇fi
(x̄i

k), x − x̄i
k〉 ≤ 0}, with initial condition P 0

i = R
n being consistent with the

algorithm below. We introduce, in the same fashion: P k
j = ∩k≥0{〈∇fj (x̄j k), x −

x̄j
k〉 ≤ 0} and P 0

j = R
n. (see algorithm [Intersection edge(fi, fj)])

The correctness of this algorithm follows P k
i ⊇ P k+1

i and P k
j ⊇ P k+1

j so that
either condition on edge(fi , fj) is fulfilled for some k.

In the sequel, we use “CLCO” as a shortcut of ∩m∈Mclco(Dm(z))

4.2. INNER CLCO APPROXIMATION

For all separated objectives in G(z), we could guess whether a point belongs to
∩m∈Mclco(Dm(z)) in the following way; let us consider fi, fj be separated in D

with x̄i , x̄j as points on respective level sets fi(x̄i) = F(z), fj (x̄j) = F(z) then
x = 1

2 (x̄i + x̄j) is likely to belong to ∩m∈Mclco(Dm(z)) or to be a good starting
point to look for a local maximum over all objectives except i and j .

Let Mij denote M\{i, j},
Dij = D ∩ {〈∇fj (x̄j), x − x̄j 〉 ≥ 0, 〈∇fj (x̄j), x − x̄j 〉 ≥ 0}.

Then solving Local Search(Dij ,Mij) ends up with either a better point in Dij ⊂
∩m∈Mclco(Dm(z)) or no better point inDij which does not mean ∩m∈Mclco(Dm(z))

is empty.

68 D. FORTIN AND I. TSEVENDORJ

4.3. OUTER CLCO APPROXIMATION

In the preliminary algorithm [10] a random generation of points on the level set
was suggested. Sometimes, the partitioning of level sets may drastically reduce
the number of attempts to improve the current solution through cutting planes;
in multiknapsack maximization, for instance, a geodesic partitioning property [4]
allows us to reduce random generation to some representative cone and yields an
efficient algorithm.

In (PCMP) case this appealing technique has to be carried over ∩m∈Mclco
(Dm(z)), an open problem; therefore, we try to approximate ∩m∈Mclco(Dm(z))

from outside by guessing a good point on the level set.
As a first attempt towards this goal, we substitute the pure random point gen-

eration by the selection of tangent point to Lfs (F (z)) along each constraint dir-
ection and then solve linearized problem at that deterministic point y. Starting
with polytope � = D, we refine it through cutting planes; let us compute r =
arg minj {fj(u) | j ∈ M} and index set of active constraints in current � at u,
(where u = arg max{〈∇fs(y), x〉/x ∈ �})

K(u) = {l | [Pu]l = pl}

where P (resp. P(u)) denotes the matrix of constraints (resp. active constraints at
u) of polytope �; under the full dimensionality assumption, [P(u)]−1 definitely
exists. Let Y be the set (columnwise) of points on the level set fr(·) intersected by
the active cone, namely

Y = u ⊗ e� − [P(u)]−1αr,

where ⊗ denotes the kronecker product and αr ∈ R
n+ solves the quadratic equations

for every column vector yi of Y

fr(y
i(α)) = F(z).

Then vector d, found as the solution of the linear system Yd = ne yields a new
cut for polytope �, as is well known in the global optimization field; notice that
right handside introduces a normalizing factor to avoid tailing off effects since it is
usual to observe such an effect in similar algorithms [4, 9].

5. Computational Experiments

We present software experiments on the following small examples. In order to
thoroughly test the algorithm, we introduce some variants like discarding useless
objectives, extending domain D...

PIECEWISE-CONVEX MAXIMIZATION PROBLEMS 69

Example 1. (see Figure 1)

f1(x) = x2
1 + (x2 + 4)2 − 36,

f2(x) = (x1 + 8)2 + (x2 − 3)2 − 36,

f3(x) = x2
1 + (x2 − 8)2 − 16,

f4(x) = (x1 − 8)2 + (x2 − 3)2 − 53,

f5(x) = (x1 − 10)2 + (x2 + 10)2 − 4

subject to

D = {x ∈ R
2 | −4 ≤ x1 ≤ 10, −6 ≤ x2 ≤ 8, x1 − x2 ≤ 10}.

Figure 1. A simple example 1.

70 D. FORTIN AND I. TSEVENDORJ

Example 2. (see Figure 2)

f1(x) = x2
1 + (x2 + 2)2 − 9,

f2(x) = 9(x1 + 3)2 + 4x2
2 − 36,

f3(x) = (x1 + 1)2 + (x2 − 4)2 − 4,

f4(x) = 1

9
(x1 − 3)2 + 1

36
(x2 − 4)2 − 1,

f5(x) = (x1 − 5)2 + (x2 + 5)2 − 1

subject to box constraint:

D = {x ∈ R
2 | −2 ≤ x1 ≤ 5, −3 ≤ x2 ≤ 4}.

Figure 2. A non-trivial example 2

PIECEWISE-CONVEX MAXIMIZATION PROBLEMS 71

Variant to fully test intersection graph:

Example 3.

f1(x) = x2
1 + (x2 + 4)2 − 36,

f2(x) = (x1 + 8)2 + (x2 − 3)2 − 36,

f3(x) = x2
1 + (x2 − 8)2 − 16,

f4(x) = (x1 − 8)2 + (x2 − 3)2 − 53,

f5(x) = (x1 − 10)2 + (x2 + 10)2 − 4

f6(x) = (x1 + 5)2 + (x2 + 4)2 − 1

subject to

D = {x ∈ R
2 | −4 ≤ x1 ≤ 10, −6 ≤ x2 ≤ 8, x1 − x2 ≤ 10}.

Variants to handle non-regularity; a problem happens to be non-regular (see Defin-
ition 3) as soon as one center of the ellipses lies on the boundary of D while the
remaining ellipses are not active at this center. In local maximum search, this
leads to a null gradient side effect resulting in an erratic (and slow) trajectory
towards an accumulation point. In order to circumvent this bad effect in practice,
we escape from a local search and directly apply the inner clco approximation; this
considerably speeds up the algorithm since a deep clco point is quickly retrieved.

Example 4.

f1(x) = x2
1 + (x2 + 4)2 − 36,

f2(x) = (x1 + 8)2 + (x2 − 3)2 − 36,

f3(x) = x2
1 + (x2 − 8)2 − 16,

f4(x) = (x1 − 8)2 + (x2 − 3)2 − 53,

subject to

D = {x ∈ R
2 | −4 ≤ x1 ≤ 10, −6 ≤ x2 ≤ 8, x1 − x2 ≤ 10}.

Example 5.

f1(x) = x2
1 + (x2 + 2)2 − 9,

f2(x) = 9(x1 + 3)2 + 4x2
2 − 36,

f3(x) = (x1 + 1)2 + (x2 − 4)2 − 4,

f4(x) = 1

9
(x1 − 3)2 + 1

36
(x2 − 4)2 − 1,

subject to box constraint:

D = {x ∈ R
2 | −2 ≤ x1 ≤ 5, −3 ≤ x2 ≤ 4}.

72 D. FORTIN AND I. TSEVENDORJ

Variants lifted to three dimensions. The same examples are lifted to a 3D box
and the size of box was chosen as being either symmetric or non-symmetric to
measure how the algorithm could escape from very good point lifted from the 2D
case whenever the box is large enough.

Example 6.

f1(x) = x2
1 + (x2 + 4)2 + x2

3 − 36,

f2(x) = (x1 + 8)2 + (x2 − 3)2 + x2
3 − 36,

f3(x) = x2
1 + (x2 − 8)2 + x2

3 − 16,

f4(x) = (x1 − 8)2 + (x2 − 3)2 + x2
3 − 53,

f5(x) = (x1 − 10)2 + (x2 + 10)2 + x2
3 − 4

subject to

D = {x ∈ R
2 | −4 ≤ x1 ≤ 10, −6 ≤ x2 ≤ 8, −2 ≤ x3 ≤ 2, x1 − x2 ≤ 10}.

Example 7.

f1(x) = x2
1 + (x2 + 4)2 + x2

3 − 36,

f2(x) = (x1 + 8)2 + (x2 − 3)2 + x2
3 − 36,

f3(x) = x2
1 + (x2 − 8)2 + x2

3 − 16,

f4(x) = (x1 − 8)2 + (x2 − 3)2 + x2
3 − 53,

f5(x) = (x1 − 10)2 + (x2 + 10)2 + x2
3 − 4

subject to

D = {x ∈ R
2 | −4 ≤ x1 ≤ 10, −6 ≤ x2 ≤ 8, −2 ≤ x3 ≤ 4, x1 − x2 ≤ 10}.

Example 8.

f1(x) = x2
1 + (x2 + 2)2 + x2

3 − 9,

f2(x) = 9(x1 + 3)2 + 4x2
2 + x2

3 − 36,

f3(x) = (x1 + 1)2 + (x2 − 4)2 + x2
3 − 4,

f4(x) = 1

9
(x1 − 3)2 + 1

36
(x2 − 4)2 + x2

3 − 1,

f5(x) = (x1 − 5)2 + (x2 + 5)2 + x2
3 − 1

subject to box constraint:

D = {x ∈ R
2 | −2 ≤ x1 ≤ 5, −3 ≤ x2 ≤ 4, −2 ≤ x3 ≤ 2}.

PIECEWISE-CONVEX MAXIMIZATION PROBLEMS 73

Example 9.

f1(x) = x2
1 + (x2 + 2)2 + x2

3 − 9,

f2(x) = 9(x1 + 3)2 + 4x2
2 + x2

3 − 36,

f3(x) = (x1 + 1)2 + (x2 − 4)2 + x2
3 − 4,

f4(x) = 1

9
(x1 − 3)2 + 1

36
(x2 − 4)2 + x2

3 − 1,

f5(x) = (x1 − 5)2 + (x2 + 5)2 + x2
3 − 1

subject to box constraint:

D = {x ∈ R
2 | −2 ≤ x1 ≤ 5, −3 ≤ x2 ≤ 4, −2 ≤ x3 ≤ 4}.

All examples were run under a digital PWS500 Unix Workstation using CPLEX
solver and C++. In the tables below, we split the results into 2 parts: one for inner
clco approximation only and one for the complete loop through inner along with
outer clco approximation.

The meanings for all columns in tables follow:

CP: #hyperplanes in the finest outer CLCO approximation,
best: best known value on corresponding approximation,
fat: how bad outer CLCO approximation could be, namely given the minimum

value over each objective fm considered by itself, i.e. q = min{fm(ym) |
m ∈ M} where yi = arg miny{fi(y) | y ∈ �} and the actual best known
value Q = minm∈M{fm(y) | y ∈ �}, this ratio (in percentage) is equal to
100 ∗ (Q − q)/ | q |; on the other hand, a small value means that outer clco
approximation is tight,

time: overall (inner+outer CLCO) user time in seconds,
all remaining columns: number of quadratic minimizations and number of linear

programs solved for related step written as #QPs:#LPs.

For outer clco approximation, we test different strategies for refining the current
approximation: given u = arg max of linearized problem, we select either worse
objective or closest to active objective at u; we also test symmetrization of clco as
for the inner approximation and generate a tangent point along all constraints either
for all or only for the active objectives at a local maximum z. Table I reports a
worse selection from u and all objectives tangent point generation, Table II reports
a worse selection from u and active objectives only and table III reports the closest
to active selection (if any) and active objectives only.

As an initial concluding remark, we would say that an inner clco approximation
achieves a very good solution with a small amount of effort and that outer clco
approximation is not tight and scarcely improves the inner clco result. From the
tables, we could see that outer CLCO approximation improves the result only for

74 D. FORTIN AND I. TSEVENDORJ

Table I. Uuter approximation cutting plane: worse inactive + all objectives

Inner CLCO Inner+outer CLCO
Ex. Local Inner Graph Best Best Local Inner Graph Outer CP Fat% Time

1 5:476 7:96 48:0 11.8676 11.8676 5:476 7:96 48:0 0:720 47 156 3.737

3 6:780 8:64 65:0 11.8671 11.8671 6:780 8:64 65:0 0:1524 49 156 8.045

4 4:340 2:64 36:0 11.8677 11.8677 4:340 2:64 36:0 0:960 51 156 4.735
2 5:64 5:39 47:0 1.2237 1.2237 5:64 5:39 47:0 0:1630 50 12 7.488

5 4:64 2:16 58:0 1.22335 1.22335 4:64 2:16 58:0 0:1216 50 121 5.423

6 5:418 7:93 48:0 15.8672 15.8678 5:624 17:279 96:0 0:7962 921 179 784.958

7 5:418 7:93 48:0 15.8672 15.8672 5:418 7:93 48:0 0:15445 699 169 31064.289
8 5:46 0:18 48:0 5.22369 5.22392 5:57 0:21 69:0 0:8916 654 201 1259.574

9 5:46 0:18 48:0 5.22369 16.8056 5:73 0:42 66:0 0:4821 213 425 349.588

Table II. Outer approximation cutting plane: worse inactive + active objectives

inner CLCO inner+outer CLCO
ex. Local Inner Graph Best Best Local Inner Graph Outer CP Fat% Time

1 5:476 7:96 48:0 11.8676 11.8676 5:476 7:96 48:0 0:168 23 155 1.220

3 6:780 8:64 65:0 11.8671 11.8671 6:780 8:64 65:0 0:168 23 155 2.138

4 4:340 2:64 36:0 11.8677 11.8677 4:340 2:64 36:0 0:168 23 155 1.052
2 5:64 5:39 47:0 1.2237 1.2237 5:64 5:39 47:0 0:1012 51 122 3.602

5 4:64 2:16 58:0 1.22335 1.22335 4:64 2:16 58:0 0:1012 51 122 3.636

6 5:418 7:93 48:0 15.8672 15.8672 5:418 7:93 48:0 0:1272 246 176 69.856

7 5:418 7:93 48:0 15.8672 15.8672 5:418 7:93 48:0 0:394 155 160 8.868
8 5:46 0:18 48:0 5.22369 5.22369 5:46 0:18 48:0 0:386 182 197 13.581

9 5:46 0:18 48:0 5.22369 16.8056 5:73 0:42 66:0 0:2671 236 365 272.398

the 3D case at a heavy LPs price. In fact, outer CLCO is involved in proving actual
emptiness of CLCO whenever inner CLCO fails to return a point inside. In above
experiments, outer CLCO exhibits a zigzagging behavior when we get closer to
an extreme point of CLCO (overdetermined active cone and singular matrix in
retrieving next cutting plane, see Figure 3); in order to prevent this heavy time
consumption as late as possible, in the next section, we deal with the question of
how to improve further inner CLCO approximation.

Table III. Outer approximation cutting plane: closest to active + active objectives

inner CLCO inner+outer CLCO
ex. Local Inner Graph Best Best Local Inner Graph Outer CP Fat% Time

1 5:476 7:96 48:0 11.8676 11.8676 5:476 7:96 48:0 0:964 74 159 5.709

3 6:780 8:64 65:0 11.8671 11.8671 6:780 8:64 65:0 0:1444 79 156 9.065

4 4:340 2:64 36:0 11.8677 11.8677 4:340 2:64 36:0 0:964 74 159 5.476
2 5:64 5:39 47:0 1.2237 1.2237 5:64 5:39 47:0 0:860 65 120 4.849

5 4:64 2:16 58:0 1.22335 1.22335 4:64 2:16 58:0 0:868 66 123 12.001

6 5:418 7:93 48:0 15.8672 15.8672 5:418 7:93 48:0 0:1194 517 178 252.815

7 5:418 7:93 48:0 15.8672 15.8672 5:418 7:93 48:0 0:88 51 142 1.173
8 5:46 0:18 48:0 5.22369 5.22369 5:46 0:18 48:0 0:4688 328 204 1159.106

9 5:46 0:18 48:0 5.22369 16.8056 5:73 0:42 66:0 0:813 245 371 60.163

PIECEWISE-CONVEX MAXIMIZATION PROBLEMS 75

5.1. TOWARDS AN INCLUSION-EXCLUSION ALGORITHM

Despite the poor outer clco approximation scheme, we suspect that the intersec-
tion graph endows nonconvex ∩m∈M(Dm(z)) with a very rich structure. We only
exploited nonadjacency between two vertices (separation between two objectives)
to the inner approximate clco. In this section, we provide a few arguments to open
up a possible further study of intersection graph since experiments for 3D cases
have shown that it could be difficult to escape from a rather good clco situation.
In figure 3 we depicted the situation when we end up with an empty inner ap-
proximation (upto tolerance) while the outer approximation is far from actual clco
extreme points. In the picture on the left, we assume that inner approximation of
∩m∈{i,j,k}clco(Dm(z)) has to be augmented with a nonconvex part coming from the
outer clco approximation and in the right-hand picture we are concerned with an
actual situation in the practical algorithm. So the next step would be to deal with
the following (PCMP): let Fij (x) = minm∈Mij

{fm(x)} for nonadjacent fi, fj in
intersection graph

maximize Fij (x)

subject to x ∈ D

〈∇fi(x̄i), x − x̄i〉 ≥ 0 (6)

〈∇fj (x̄j), x − x̄j 〉 ≥ 0 (7)

where as above Mij = M\{i, j} and constraints (6) and (7) include some convex
part of clco related to the closest points (apart) x̄i, x̄j on level sets fi(x) = fj (x) =
F(z). It could be extended to adjacent fi, fj as well, provided the closest points
x̄i, x̄j in Lfi (F (z))∩ Lfi (F (z)) are close enough to a clco extreme point. In other
words, patching a convex inner clco approximation with nonconvex parts from
an outer clco approximation is a challenging issue around the famous inclusion-
exclusion principle on property ψ on sets A,B,C:

ψ(A ∪ B ∪ C) =
ψ(A) + ψ(B) + ψ(C) − ψ(A ∩ B) − ψ(A ∩ C)− ψ(B ∩ C) + ψ(A ∩ B ∩ C)

In practical experiments we deal with only two sets and outline above how to deal
with three sets; as for its general setting with n sets, it remains far beyond the scope
of these prospective concluding remarks.

Another minor remark concerns the intersection graph G(z) itself. It is worth-
while concentrating on connected components in turn since each corresponding
clco is a candidate for improvement; however, no clear understanding of their rel-
ative degree of improvement is available. In the same way, modular decomposition
and the maximum clique of G(z) could help in choosing a direction of improvement
without any clear understanding of such an impact.

76 D. FORTIN AND I. TSEVENDORJ

Figure 3. An inclusion–exclusion clco approximation.

6. Concluding remarks

In this article, we presented a practical algorithm to solve piecewise convex max-
imization problems. It has proved to be efficient for finding an optimal solution in
R

2 and at the same time it suggested how difficult it could be to escape from a very
good local maximum. We introduced the intersection graph between objectives and
noticed how it influences the direction of the search. It compares favorably with
standard techniques from the global optimization that amount to outer approxim-
ating the region of interest through hyperplanes. It opens up a field which could be
studied more thoroughly:

• the structure of this graph (connected components, the maximum clique and
its relationship with Helly’s Theorem [3],...)

• its connection to the inclusion-exclusion principle applied to convex and non-
convex parts of the crucial parts in the solution space,

• its relationships with finding the real solutions of a system of nonlinear equa-
tions [1].

To our knowledge, any further improvement will have an impact on solving non-
convex optimization problems.

7. Acknowledgements

We would like to thank two anonymous referees for their valuable suggestions.

References

1. Bulatov, V. P. (2000) Numerical method for finding all real roots of systems of nonlinear
equations. Zh. Vychisl. Mat. Mat. Fiz., 40(3): 348–355.

PIECEWISE-CONVEX MAXIMIZATION PROBLEMS 77

2. Dem’yanov, V.F. and Vasil’ev, L.V. (1985) Nondifferentiable Optimization. Optimization
Software, Inc., Publications Division, New York.

3. Eggleston, H.G. (1966) Convexity. Cambridge University Press.
4. Fortin, D. and Tsevendorj, I. (2000) Global optimization and multiknapsack: a percolation

algorithm. Le rapport de recherche de l’INRIA, France 3912: 19.
5. Horst, R., Pardalos, P.M. and Van Thoai, N. (1995) Introduction to Global Optimization.

Kluwer Academic.
6. Horst, R. and Tuy, H. (1990). Global Optimization. Springer, Berlin.
7. Kim, D. and Pardalos, P. M. (2000) A dynamic domain contraction algorithm for nonconvex

piece-wise linear network flow problems. J. Global Optim., 17: 225–234.
8. Pardalos, P. M. and Schnitger, G. M. (1988) Checking local optimality in constrained quadratic

problems is NP-hard. Oper. Res. Letters, 7: 33–35.
9. Strekalovsky, A. S. and Tsevendorj, I. (1998). Testing the R-strategy for a reverse convex

problem. J. Global Optim., 13(1): 61–74.
10. Tsevendorj, I. (2001) Piece wise-convex maximization problems : Global optimality condi-

tions. J. Global Optim., 21: 1–14.

